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1. Introduction

Self-excited chatter is undesirable in machine tool system. Chatter is a kind of instability
inherent to the interaction of complex cutting process and elastic machine tool structure. Research
has established two major causes of chatter in dynamic machining system, namely regeneration
effect and velocity dependence of cutting force. A linear analysis of chatter is sufficient to predict
the onset of instability of cutting process. However, dynamics of fully developed chatter calls for a
suitable non-linear model. Various non-linear models of cutting process are available in Refs.
[1–3]. Recently, it has been understood that apparent random fluctuation of cutting force and
other dynamic variables like displacement, acceleration etc. of machine tool structure can be
explained in the light of chaos theory [1,4–6].
A vast body of literature exists on chatter control [7]. Various passive and active control

techniques of controlling chatter have been proposed in literature. Passive techniques include the
use of passive tuned–mass–damper, hydraulic damper, friction damper and impact damper etc.
Use of negative feed-back control, based on the direct measurement of cutting force or relative
displacement between tool and workpiece, in mitigating chatter have also been investigated. In the
present article, a passive chatter control technique utilizing a very high-frequency force is
investigated.
Results on the effect of high-frequency excitation on non-linear instability are available in

literature. Theoretical and experimental research have been carried out to understand this
stabilizing effect [8,9]. High-frequency excitation is termed as fast vibration in literature.
In what follows, a simplified non-linear model of chatter as described in Ref. [1] is considered to

investigate the effect of high-frequency excitation on chatter dynamics. In this model, a negatively
sloped non-linear cutting force–velocity relationship stands as a primary source of instability. A
two-degree-of-freedom linear oscillator models elastic machine tool structure. As the resulting
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equations of motion are complex in nature, no analytical solution is attempted. Equation of
motion is numerically simulated using Runge–Kutta–Merson algorithm with adaptive step size
control. Effect of high-frequency excitation on the system dynamics is investigated in terms of
vibration displacement, and the mechanism of the effect is explained theoretically using the notion
of effective cutting force.

2. Theoretical model of cutting dynamics

2.1. Steady state model of cutting process

A phenomenological model of steady orthogonal cutting process is depicted in Fig. 1a. Cutting
force Fc generated in the process is described by an average empirical relationship as described
below. Two cutting force components Fx and Fy are related to each other by the following
relationship:

Fy ¼ KFx; ð1Þ

where Fx and K are functions of cutting velocity v and uncut chip thickness h as given below:

Fx ¼ Fx0 l1
v

v0
� 1

� �2

þ1

( )
h

h0
ð2Þ

and

K ¼ K0 l2
v

v0
� 1

� �2

þ1

( )
l3

h

h0
� 1

� �2

þ1

( )
; ð3Þ

where parameters

Fx0;K0; h0; v0; l1; l2; l3

are related to cutting conditions. Chip flow velocity along chip tool interface is given by

vf ¼
v

R
; ð4Þ
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Fig. 1. (a) Cutting model (b) M/c tool structural model.
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where

R ¼ R0 l4
v

v0
� 1

� �2

þ1

( )
: ð5Þ

2.2. Dynamic model of cutting process

In Section 2.1, a steady state model of cutting process is discussed. For a large class of
engineering materials, this model is valid only in some average sense under the assumption that
there is no variation in cutting velocity and uncut chip thickness. However, in actual unsteady
cutting process both cutting velocity v and h varies with time and is closely related to the dynamics
of elastic machine tool structure. A simplified dynamic model of cutting involving the interaction
of elastic machine tool structure and the dynamic cutting force is depicted in Fig. 1b. A two-
degree-of-freedom oscillator describes dynamics of elastic machine tool structure, where dynamics
in x and y directions are coupled through the cutting force. Dynamics of the system is described
by the following differential equations:

mx00 þ cxx0 þ kxx ¼ FxðtÞ; ð6Þ

my00 þ cyy0 þ kyy ¼ KFxðtÞ; ð7Þ

where

Fx;Fy

are as described in Eqs. (1) and (2), except that in dynamic cutting model v; h; etc. are time-
dependent quantities, and are given by

hðtÞ ¼ hi � yðtÞ; ð8Þ

vðtÞ ¼ vi � x0ðtÞ; ð9Þ

vf ðtÞ ¼
vðtÞ
RðtÞ

� y0ðtÞ ð10Þ

and

Fx ¼ 0; 8 ho0 or vo0; ð11Þ

Kð�vf Þ ¼ �Kðvf Þ; ð12Þ

where hi and vi are nominal uncut chip thickness and cutting velocity as has been set by the
operator. Eq. (11) is introduced to simulate the unusual cutting conditions in dynamic
environment, i.e., when cutting tool comes out of the workpiece or resultant cutting velocity is
reversed. Eq. (12) takes care of the fact that direction of friction force is reversed when resultant
chip flow velocity is reversed.
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Introducing the following non-dimensional parameters:

X ¼
x

h0
; Y ¼

y

h0
; t ¼ w0t; w0 ¼

v0

h0
;

’X ¼
x0

v0
; ’Y ¼

y0

v0
; .X ¼

x00

h0w
2
0

; .Y ¼
y00

h0w
2
0

;

Hi ¼
hi

h0
; H ¼ Hi � Y ; Vi ¼

vi

v0
; V ¼ Vi � ’X;

K1;2 ¼
kx;y

mw2
0

; C1;2 ¼
cx;y

mw0
; F0 ¼

Fx0

h0mw2
0

;

one can rewrite the equations of motion (6) and (7) as given below

.X þ C1
’X þ K1X ¼ F ; ð13Þ

.Y þ C2
’Y þ K2Y ¼ KF ; ð14Þ

where

F ¼ F0Hfl1ðV � 1Þ2 þ 1gUðHÞUðV Þ;

K ¼ K0fl2ðVf � 1Þ2 þ 1gfl3ðH � 1Þ2 þ 1gUðF ÞSgnðVf Þ;

Vf ¼ V � R ’Y;

and

R ¼ R0fl4ðV � 1Þ2 þ 1g;

with

UðxÞ ¼
1 8 x > 0;

0; otherwise

(

and

SgnðxÞ ¼

1 8 x > 0;

0; x ¼ 0;

�1 8 xo0:

8><
>:

In the above equations ‘dot’ denotes differentiation with respect to non-dimensional time t:When
a high-frequency excitation of amplitude fe and frequency of is imposed on the tool, Eqs. (13) and
(14) are written as

.X þ C1
’X þ K1X ¼ F þ Fe sinðOf :tÞ; ð15Þ

.Y þ C2
’Y þ K2Y ¼ KF ; ð16Þ
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where

Fe ¼
fe

mh0w
2
0

and

Of ¼
of

w0
:

3. Numerical simulation

Eqs. (15) and (16) are non-linear equations, and are not amenable to closed form analytical
solution. Therefore, Eqs. (15) and (16) are numerically integrated using the fourth order Runge–
Kutta–Merson algorithm with adaptive step size control (a NAG library subroutine). The
parameter values used in the article are listed below:

l1 ¼ 0:3; l2 ¼ 0:7; l3 ¼ 1:5; l4 ¼ 2:2;

h0 ¼ 0:25 mm; v0 ¼ 6:6 m=s; K0 ¼ 0:36; w0 ¼ 2:7
 104 s�1:

The above parameter values are approximately true for a wide range of low carbon steels. For
further treatment, Vi ¼ Hi ¼ 0:5 are adopted to represent typical cutting condition when
instability may arise. The resonant frequency of a clamped tool on lathe being in the range of
1–10 kHz, it is reasonable to choose K1 ¼ 1: Rigidity in y direction being less, a lower value of
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Fig. 2. X and Y vibration with and without fast excitation. ——, X vibration; – – –, Y vibration. F0 ¼ 0:5: (a) Without

fast vibration; (b) with fast vibration, Fe ¼ 2000; Of ¼ 1000; (c) with fast vibration, Fe ¼ 3000; Of ¼ 1000:
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K2 ¼ 0:25 is chosen. Damping values C1 and C2 are set to zero. Typical time history plots of tool
vibrations in x and y directions are shown in Fig. 2a for F0 ¼ 0:5: From Fig. 2a, one observes
chaotic oscillation, and detailed discussion on the nature of these oscillations is available in Ref.
[1]. The effect of fast excitation on the vibration is plotted in Figs. 2b and c. From these figures, it
is observed that for some parameter values of fast excitation, chaotic oscillation is completely
suppressed. For stronger fast excitation, instability reappears again, but chaotic oscillation is
replaced by regular periodic oscillation. However, it is to be understood that apart form the low-
frequency oscillation, a high-frequency component is always present in the response, and this
residual vibration can be made insignificantly small by choosing the frequency of excitation few
orders higher than the natural frequency of the system.
So far as the proper selection of the amplitude and frequency of fast excitation is concerned it is

worth noting that fast vibration is characterized primarily by its strength, quantified as FeO�1
f :

Numerically this signifies that an excitation with Fe ¼ 10 and Of ¼ 10 is as strong as that with
Fe ¼ 100 and Of ¼ 100: To achieve significant effect of fast vibration on the class of systems under
discussion, this strength factor must be greater than unity, while the frequency should be
significantly higher than the natural frequency of vibration of the system. Due to fast vibration a
high-frequency component is always present in the steady state response of the system. Selecting
the frequency of excitation few orders higher than the natural frequency of the system can reduce
this high-frequency component. However, this calls for very high amplitude of exciting force for
maintaining the strength of the fast vibration at the desired level. Thus, a compromise between the
high-frequency residual component and the frequency or force of fast vibration may sometimes be
required in practice.
From Fig. 2b and c, one observes that due to fast excitation, the tool experiences substantial

static-deflection in the y direction, and the static deflection increases with the strength of fast
excitation. However, as shown in Fig. 3, applying an appropriate bias force Fby in y direction can
reduce this static deflection.
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Fig. 3. Time history of X ; and Y vibration with fast excitation and a bias force in y direction. F0 ¼ 0:5; Fby ¼ 0:14;
Fe ¼ 2000; Of ¼ 1000: – – – –, X vibration; ——, Y vibration.
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From numerical simulation, it is understood that chaotic tool vibration may be suppressed by
proper use of high-frequency excitation. In general with the increasing strength of fast vibration,
tool vibration decreases initially; then it is completely suppressed for a range of parameter values,
and vibration reappears again when fast vibration is very strong. In what follows, the mechanism
of this effect is described in detail using the concept of effective cutting force.

4. Effective cutting force

The concept of effective cutting force stems from the theory of fast vibration [10].
According to this theory, any non-linear state dependent force undergoes non-trivial functional
changes under the influence of fast vibration. This modification of force takes place due to the
averaging effect (in a time scale comparable to the natural time scale of the system) of the fast
sweeping of the states. The computational procedure of the effective cutting force is briefly
discussed below.
Using the Method of Direct Partition of Motion [10], one can show that the slow dynamics

(involving a time scale comparable to the natural time scale of the system without fast excitation)
of the system given by Eqs. (15) and (16) can be effectively described by the following autonomous
equations:

.Xs þ C1
’Xs þ K1Xs ¼ /FS; ð17Þ

.Ys þ C2
’Ys þ K2Ys ¼ /KFS: ð18Þ

In the above equations, Xs and Ys represent slow components of X and Y motion, when the
dynamics is viewed in a time scale comparable to the natural time period of vibration; and /FS
and /KFS are the effective cutting forces non-trivially modified by the effect of fast excitation,
and are computed after replacing

V ¼ Vi � ’X

in Eqs. (15) and (16) by

V ¼ Vi � ’Xs þ
Fe

Of

cosðOf tÞ ð19Þ

and computing the following average

/F ;KFS ¼
1

2p

Z 2p

0

ðF ;KF Þ dðOf tÞ ð20Þ

Eq. (20) is computed numerically [11] to obtain the effective cutting force. The effective cutting
forces are plotted in Figs. 4 and 5. It is observed from Fig. 4 that the system is unstable because of
the positive slope of cutting force, which introduces negative damping in the system. However, the
slope of the effective cutting force /FS becomes negative due to the effect of fast vibration, and
the system is stabilized in the x direction. It is also observed that the effective cutting force
increases with the strength of fast excitation. From Fig. 5, similar observation is also made for
cutting force in y direction, particularly in low x- and y-axis velocity region. However, in some
high velocity regions, slope (with respect to y-axis velocity) of the effective cutting force /KFS
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Fig. 5. Effective Y cutting force with and without fast excitation. Of ¼ 1000: (a) Fe ¼ 0; (b) Fe ¼ 2000; (c) Fe ¼ 3000:

Fig. 4. Cutting force vs velocity without and with fast excitation. ——, Without fast excitation; - - - - - -, with fast

excitation (Fe ¼ 2000); � � � � � � � , with fast excitation (Fe ¼ 3000). Of ¼ 1000:
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may be positive, and instability is possible, if due to some reasons or other, velocity falls in that
region. This accounts for the reappearance of instability for stronger fast excitation.

5. Conclusions

The effect of very high-frequency excitation on chaotic instability of machine tools during
cutting is discussed. It is shown that machine tool chatter can be suppressed by using appropriate
strong high-frequency excitation. For mathematically describing the chatter phenomenon, an
average non-linear model of cutting process and a linear two-degree-of-freedom model of machine
tool structure are considered. The effect of fast excitation on the stability of the system is
described in light of the effective cutting force function.
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